Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38254382

RESUMO

Anti-Müllerian hormone (AMH) is proposed as a biomarker for fertility in cattle, yet this associative relationship appears to be influenced by heat stress (HS). The objective was to test serum AMH and AMH-related single nucleotide polymorphisms (SNPs) as markers potentially predictive of reproductive traits in dairy cows experiencing HS. The study included 300 Holstein cows that were genotyped using BovineSNP50 (54,000 SNP). A genome-wide association study was then executed. Nine intragenic SNPs within the pathways that influence the AMH gene were found important with multiple comparisons adjustment tests (p < 1.09 × 10-6). A further validation study was performed in an independent Holstein cattle population, which was divided into moderate (MH; n = 152) and severe heat-stressed (SH; n = 128) groups and then subjected to a summer reproductive management program. Serum AMH was confirmed as a predictor of fertility measures (p < 0.05) in MH but not in the SH group. Cows were genotyped, which revealed four SNPs as predictive markers for serum AMH (p < 0.01), reproductive traits (p < 0.01), and additional physiological variables (p < 0.05). These SNPs were in the genes AMH, IGFBP1, LGR5, and TLR4. In conclusion, serum AMH concentrations and AMH polymorphisms are proposed as predictive markers that can be used in conjunction with genomic breeding value approaches to improve reproductive performance in Holstein cows exposed to summer HS conditions.

2.
Genes (Basel) ; 14(8)2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37628641

RESUMO

Environmental heat stress triggers a series of compensatory mechanisms in sheep that are dependent on their genetic regulation of thermotolerance. Our objective was to identify genes and regulatory pathways associated with thermotolerance in ewes exposed to heat stress. We performed next-generation RNA sequencing on blood collected from 16 pregnant ewes, which were grouped as tolerant and non-tolerant to heat stress according to a physiological indicator. Additional samples were collected to measure complete blood count. A total of 358 differentially expressed genes were identified after applying selection criteria. Gene expression analysis detected 46 GO terms and 52 KEGG functional pathways. The top-three signaling pathways were p53, RIG-I-like receptor and FoxO, which suggested gene participation in biological processes such as apoptosis, cell signaling and immune response to external stressors. Network analysis revealed ATM, ISG15, IRF7, MDM4, DHX58 and TGFßR1 as over-expressed genes with high regulatory potential. A co-expression network involving the immune-related genes ISG15, IRF7 and DXH58 was detected in lymphocytes and monocytes, which was consistent with hematological findings. In conclusion, transcriptomic analysis revealed a non-viral immune mechanism involving apoptosis, which is induced by external stressors and appears to play an important role in the molecular regulation of heat stress tolerance in ewes.


Assuntos
Transtornos de Estresse por Calor , Termotolerância , Gravidez , Animais , Feminino , Ovinos/genética , Transcriptoma , Monócitos , Apoptose/genética , Perfilação da Expressão Gênica
3.
Biology (Basel) ; 12(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37237493

RESUMO

Dairy production in Holstein cows in a semiarid environment is challenging due to heat stress. Under such conditions, genetic selection for heat tolerance appears to be a useful strategy. The objective was to validate molecular markers associated with milk production and thermotolerance traits in Holstein cows managed in a hot and humid environment. Lactating cows (n = 300) exposed to a heat stress environment were genotyped using a medium-density array including 53,218 SNPs. A genome-wide association study (GWAS) detected six SNPs associated with total milk yield (MY305) that surpassed multiple testing (p < 1.14 × 10-6). These SNPs were further validated in 216 Holstein cows from two independent populations that were genotyped using the TaqMan bi-allelic discrimination method and qPCR. In these cows, only the SNPs rs8193046, rs43410971, and rs382039214, within the genes TLR4, GRM8, and SMAD3, respectively, were associated (p < 0.05) with MY305, rectal temperature (RT), and respiratory rate. Interestingly, these variables improved as the number of favorable genotypes of the SNPs increased from 0 to 3. In addition, a regression analysis detected RT as a significant predictor (R2 = 0.362) for MY305 in cows with >1 favorable genotype, suggesting this close relationship was influenced by genetic markers. In conclusion, SNPs in the genes TLR4, GRM8, and SMAD3 appear to be involved in the molecular mechanism that regulates milk production in cows under heat-stressed conditions. These SNPs are proposed as thermotolerance genetic markers for a selection program to improve the milk performance of lactating Holstein cows managed in a semiarid environment.

4.
Trop Anim Health Prod ; 55(3): 174, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099050

RESUMO

Ovine reproductive behavior depends on annual photoperiodic cycle and its impact on endogenous melatonin secretion. In this regard, exogenous melatonin administration previous to the physiological anestrus period could modify the reproductive performance of sheep in the northwest of Mexico. Two independent studies were performed to evaluate such hypothesis in hair sheep implanted with melatonin prior to the anestrus season in latitudes 24° and 25° of Mexico. Study 1 involved 15 rams assigned to one of three treatments receiving 0mg (n=5), 18mg (n=5), or 36mg (n=5) of melatonin subcutaneously. Study variables were measured monthly since implantation (d0) and included testosterone concentration, scrotal circumference, mass motility, individual motility, and sperm concentration. Study 2 included 50 ewes assigned to one of two treatments receiving 0mg (n=25) or 18mg (n=25) of melatonin subcutaneously. In ewes, progesterone concentration and the frequency of females in anestrus were measured during the implantation (-30d), as well as at the beginning (0d) and at the end (45d) of the mating period, while pregnancy rate was determined by ultrasonography 45d after. Continuous variables were analyzed using a mixed effects model considering treatment, time, and the treatment by time interaction as fixed effects. Animal nested within treatment was the random effect. Binary variables were analyzed using the chi-square test. In males, melatonin improved testosterone and sperm concentrations (P<0.05), while in females, a 28% higher pregnancy rate was observed in implanted ewes (P<0.05). Therefore, melatonin enhanced reproductive parameters in both sexes and its exogenous administration previous to the anestrus season in northwest Mexico could be more effective in rams.


Assuntos
Melatonina , Gravidez , Ovinos , Animais , Feminino , Masculino , Anestro , Estações do Ano , México , Sêmen , Carneiro Doméstico , Testosterona
5.
J Therm Biol ; 112: 103475, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796920

RESUMO

Pelibuey sheep exhibit reproductive activity through the year, but warm weather lowers their fertility and demonstrates physiological limitations of environmental heat stress. Single nucleotide polymorphisms (SNPs) associated with heat stress tolerance in sheep have been reported previously. The objective was to validate the association of seven thermo-tolerance SNP markers with reproductive and physiological traits in Pelibuey ewes raised in a semiarid region. Pelibuey ewes were assigned to a cool (January 1st.- March 31st.; n = 101) or warm (April 1st.- August 31st.; n = 104) experimental group. All ewes were exposed to fertile rams and assessed for pregnancy diagnosis 90 days later; lambing day was reported at birth. These data served to calculate the reproductive traits of services per conception, prolificacy, days to estrus, days to conception, conception rate and lambing rate. Rectal temperature, rump/leg skin temperature and respiratory rate were measured and reported as physiological traits. Blood samples were collected and processed to extract DNA, which was genotyped using the TaqMan allelic discrimination method and qPCR. A mixed effects statistical model was used to validate associations between SNP genotypes and phenotypic traits. The SNPs rs421873172, rs417581105 and rs407804467 were confirmed as markers associated with reproductive and physiological traits (P < 0.05), and these SNPs were in the genes PAM, STAT1 and FBXO11, respectively. Interestingly, these SNP markers resulted as predictors for the evaluated traits but only in ewes from the warm group, which indicated their association with heat-stress tolerance. An additive SNP effect was confirmed with the highest contribution (P < 0.01) of the SNP rs417581105 for the evaluated traits. Reproductive performance improved (P < 0.05) and physiological parameters decreased in ewes carrying favorable SNP genotypes. In conclusion, three thermo-tolerance SNP markers were associated with improved reproductive and physiological traits in a prospective population of heat-stressed ewes raised in a semiarid environment.


Assuntos
Fertilidade , Reprodução , Gravidez , Ovinos/genética , Animais , Feminino , Masculino , Estudos Prospectivos , Reprodução/fisiologia , Fertilidade/genética , Carneiro Doméstico/fisiologia , Estro
6.
Reprod Domest Anim ; 57(8): 839-848, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35434829

RESUMO

Sustainability of dairy production depends largely on reproductive efficiency that is affected by heat stress due to high ambient temperature and humidity during summer. Supplementation of minerals has been proposed as a management strategy to minimize adverse impact of heat stress on fertility. The objective of this study was to determine the effects of an injectable mineral supplement (Fosfosan) containing selenium (Se), copper (Cu), potassium (K), magnesium (Mg) and phosphorus (P) on the ovarian structures, reproductive hormones and conception rate of heat-stressed Holstein cows. Sixteen cows were assigned during summer to one of two treatments, a control group (CON; n = 8) and a mineral-supplemented group (SUP; n = 8). Ambient temperature and relative humidity records were collected and processed to estimate the temperature-humidity index (THI), which confirmed a heat-stressed environment during the study (avg. THI = 79.4). Cows were subjected to a fixed-time artificial insemination (FTAI) program using the CIDR-Synch synchronization protocol. Traits indicative of ovarian activity were recorded during and after this protocol, as well as serum concentrations of reproductive hormones. Pregnancy diagnosis was made 28 and 35 d after FTAI. A completely randomized block design with repeated measures over time was performed to study ovarian functional structures and its hormonal profiles. Correlations and regressions were estimated to study relationships between ovarian structures and related hormones. Mineral supplementation did not increase follicular diameter or follicular populations (p > .05), yet tended to increase corpus luteum diameter (p < .10), and it enhanced (p < .01) oestrogen and progesterone serum concentrations and improved (p < .05) cow's conception rate. Diameter of dominant follicles and corpus luteum was correlated (p < .05) with oestrogen and progesterone levels, respectively, but only in mineral-treated cows. Two additional dairy herds were evaluated to confirm that mineral supplementation improved conception rate during the heat stress period (objective 2). Cows from dairy 1 received FTAI during winter (n = 401) and summer (n = 240), whereas cows from dairy 2 were bred after natural detected oestrus during winter (n = 558) and summer (n = 314). Conception rates were higher (p < .05) in winter than summer and they improved (p < .05) with mineral supplementation, but only in cows managed during summer. In conclusion, supplementation of minerals enhanced hormonal secretion from ovarian structures and improved conception rate in Holstein cows exposed to summer heat stress.


Assuntos
Doenças dos Bovinos , Transtornos de Estresse por Calor , Animais , Bovinos , Suplementos Nutricionais , Estrogênios/farmacologia , Sincronização do Estro , Feminino , Transtornos de Estresse por Calor/veterinária , Inseminação Artificial/veterinária , Lactação , Gravidez , Progesterona , Reprodução
7.
Trop Anim Health Prod ; 54(2): 88, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124730

RESUMO

The lactation curve in dairy cows is influenced by the calving season, which is highly dependent on the warm climate in semi-arid regions. Objective herein was to evaluate effects of calving season on the parameters and components of the lactation curve in Holstein cows. The study included 278,317 milk records collected from 1086 cows from the 1st to 5th calving and good body condition score. The cows were grouped according to the season in which they calved: winter-calved (CS1), summer-calved (CS2), and autumn-calved cows (CS3). Ambient temperature and humidity data were used to calculate the temperature-humidity index (THI). The NLIN procedure was used to estimate the parameters of the lactation curve that served to calculate the components. The mixed procedure was executed to analyze the fixed effect of calving season. Associations between lactation curve traits were tested using correlation and regression analyses. A univariate model was utilized to calculate heritability. Average THI values during the lactation period were 73.5, 68.5, and 69.5 units for CS1, CS2, and CS3 groups, respectively. Initial milk production and increasing rate to the maximum milk yield in CS1 and CS3 groups were higher (P < 0.05) than CS2 cows. However, persistency and total milk yield during the entire lactation period were superior (P < 0.05) for CS2 and CS3 cows compared to CS1 cows, probably due to the moderate heat stress during the lactation period in the CS1 group. In cows from CS2 and CS3 groups, total milk production at 305 days was moderately correlated with initial milk production (r = 0.47; P < 0.05), and highly correlated with milk yield at peak day (r = 0.91; P < 0.05) which resulted as reliable predictor for total milk yield during the entire lactation (R2 = 0.83). In conclusion, the THI prevailing during the different calving seasons appeared to be an important factor influencing the performance of the lactation curve.


Assuntos
Clima Desértico , Lactação , Animais , Bovinos , Feminino , Umidade , Leite , Estações do Ano
8.
J Therm Biol ; 101: 103095, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34879913

RESUMO

Environmental heat stress negatively influences sheep production in warm semi-arid regions. An animal's ability to tolerate warm weather is difficult to measure naturally due to environmental variability and genetic variation between animals. In this study we developed a thermo-tolerance indicator (TTI) to define heat stress tolerance in pregnant sheep in a controlled environment. Next, we performed a genome-wide association study (GWAS) to identify genomic regions and target genes associated with thermo-tolerance in sheep. Pregnant Columbia-Rambouillet crossbred ewes (n = 127) were heat-stressed inside a climate-controlled chamber for 57 days by increasing the temperature-humidity index to ≥30. Rectal temperature (RT) and feed intake (FI) data were collected daily and used for the predictive TTI analysis. After the tenth day of heat stress, the regression analyses revealed that FI was stable; however, when the ewe's RT exceeded 39.8 °C their FI was less than thermo-tolerant ewes. This average predicted temperature was used to classify each ewe as heat stress tolerant (≤39.8 °C) and non-heat stress tolerant (>39.8 °C). A GWAS analysis was performed and genomic regions were compared between heat stress tolerant and non-tolerant ewes. The single-marker genomic analysis detected 16 single nucleotide polymorphisms (SNP) associated with heat stress tolerance (P < 0.0001), whereas the multi-marker Bayesian analysis identified 8 overlapped 1-Mb chromosomal regions accounting for 11.39% of the genetic variation associated with tolerance to heat stress. Four intragenic SNP showed a remarkable contribution to thermo-tolerance, and these markers were within the genes FBXO11 (rs407804467), PHC3 (rs414179061), TSHR (rs418575898) and STAT1 (rs417581105). In conclusion, genomic regions harboring four intragenic SNP were associated with heat stress tolerance, and these candidate genes are proposed to influence heat tolerance in pregnant ewes subjected to an artificially induced warm climate. Moreover, these genetic markers could be suitable for use in further genetic selection programs in sheep managed in semi-arid regions.


Assuntos
Resposta ao Choque Térmico/genética , Ovinos/genética , Termotolerância/genética , Animais , Temperatura Corporal , Proteínas F-Box/genética , Feminino , Estudo de Associação Genômica Ampla/veterinária , Temperatura Alta , Complexo Repressor Polycomb 1/genética , Polimorfismo de Nucleotídeo Único , Gravidez , Receptores da Tireotropina/genética , Fator de Transcrição STAT1/genética
9.
Trop Anim Health Prod ; 53(3): 355, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106352

RESUMO

Components of the GH/IGF1 endocrine axis regulate growth and reproductive traits in cattle. The pro-melanin-concentrating hormone (PMCH) gene located within chromosome 5 belongs to this axis. Objective herein was to evaluate PMCH single-nucleotide polymorphisms (SNPs) as molecular markers associated with age at first calving, calving interval, and age at second calving in Angus and Brangus beef heifers raised in desert conditions. Five SNPs within the PMCH gene were included in the study. Three of these SNPs had minor allele frequency > 10% and only one SNP did not deviate from Hardy-Weinberg equilibrium. A genotype to phenotype association analyses was performed using a mixed-effects model which included phenotype as the response variable, SNP genotype, breed, year of birth and age of dam as fixed terms, and sire as a random effect. Genotypes from the SNP rs135033882 were found to be associated (P < 0.05) with all evaluated fertility traits, and the term breed resulted as a significant source of variation only for age at second calving. The allele A was the favorable allele because it decreased the age at first calving 98.6 days, the calving interval 85.3 days, and the age at second calving 183.1 days, in Angus and Brangus heifers. In conclusion, we proposed a SNP within the PMCH gene as a potential candidate marker associated with reproductive performance in Angus and Brangus beef heifers raised in a desert climate.


Assuntos
Fertilidade , Hormônios Hipotalâmicos/genética , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Feminino , Fertilidade/genética , Genótipo , Fenótipo , Precursores de Proteínas
10.
Trop Anim Health Prod ; 52(6): 3457-3466, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32939704

RESUMO

Sheep production in desert environments during summer is challenging due to heat stress which reduces feed intake, growth, and fertility. Despite warm conditions, some ewes are able to maintain a normal performance suggesting the existence of genetic bases underlying heat tolerance. Our objective was to discover and validate genetic markers associated with thermo-tolerance in pregnant ewes exposed to warm environmental conditions. Using a well-defined model laboratory of heat stress in sheep, pregnant Columbia-Rambouillet crossbred ewes (n = 100) were examined. Following acclimation to the laboratory at thermo-neutral conditions, heat stress was induced in ewes by increasing the temperature-humidity index in a control environmental chamber during mid-gestation. Feed intake, water consumption, and rectal temperature were recorded daily and used to establish the heat stress tolerance index (HSTI) for each ewe. Rectal temperature was a predictor (P < 0.05) of feed intake, and the regression coefficient was used to classify the HSTI. In a subset of 24 ewes, a genome-wide association study (GWAS) was performed using the Illumina OvineSNP50 BeadChip. Single-marker analysis detected 3 intragenic SNPs associated with HSTI (P value = 10-5). Bayesian multi-marker approach discovered 26 chromosomal regions across the genome which accounted for 9.8% of the variation associated with HSTI. In an independent sheep population (n = 42), the three discovered SNPs were validated as molecular markers associated with thermo-tolerance phenotypic traits. These SNPs were located within the genes F13A1, PAM, and PRELID2. In conclusion, three SNPs appear to be novel molecular markers associated with heat stress tolerance in pregnant ewes providing new knowledge about genetic foundations of thermo-tolerance.


Assuntos
Marcadores Genéticos/fisiologia , Resposta ao Choque Térmico/genética , Polimorfismo de Nucleotídeo Único/fisiologia , Carneiro Doméstico/fisiologia , Animais , Arizona , Feminino , Estudo de Associação Genômica Ampla/veterinária , Temperatura Alta , Gravidez , Carneiro Doméstico/genética , Termotolerância/genética
11.
Trop Anim Health Prod ; 52(3): 1357-1363, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31970631

RESUMO

Paratuberculosis is caused by Mycobacterium avium subspecies paratuberculosis (MAP), a chronic disease of a negative economic impact on sheep production. In the state of Sonora, Mexico, there are no reports on the prevalence of MAP in sheep and risk factors associated with it. The objective of this study was to estimate the seroprevalence of MAP and risk factors associated by testing antibody-positive in sheep flocks located in the arid and hot region of Sonora, Mexico. A cross-sectional study was conducted from February 2012 to December 2014, in 43 flocks. Serum samples from 1178 individual sheep were obtained to detect antibodies against MAP by immunodiffusion in agar-gel. During blood sampling, information about animal and flock management risk factors were obtained by applying a questionnaire to the owners. Risk factors associated with seroprevalence of MAP were estimated using binary logistic regression. The true prevalence of MAP was 7.48% (95% CI 5.98, 8.98) and 53.5% of flocks had at least one seropositive animal. An animal was more likely to be seropositive if it was from a large flock (> 300 animals; OR 3.52, 95% CI 1.24, 9.99) and was born outside the farm (OR 6.24; 95% CI 2.9-1, 3.52). This is the first report of Mycobacterium avium subspecies paratuberculosis seroprevalence in sheep, in Sonora, Mexico. Large flocks and the entry of new animals to the flock were critical risk factors associated with MAP seropositivity.


Assuntos
Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/epidemiologia , Doenças dos Ovinos/epidemiologia , Animais , Estudos Transversais , Feminino , Modelos Logísticos , Masculino , México/epidemiologia , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos , Ovinos
12.
Trop Anim Health Prod ; 50(8): 1913-1920, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29926362

RESUMO

Prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) are in hormone-response pathways involved in energy metabolism during thermoregulation processes in cattle. Objective herein was to study the association between single nucleotide polymorphisms (SNP) within genes of the PRL and GH/IGF-1 pathways with fertility traits such as services per conception (SPC) and days open (DO) in Holstein cattle lactating under a hot-humid climate. Ambient temperature and relative humidity were used to calculate the temperature-humidity index (THI) which revealed that the cows were exposed to heat stress conditions from June to November of 2012 in southern Sonora, Mexico. Individual blood samples from all cows were collected, spotted on FTA cards, and used to genotype a 179 tag SNP panel within 44 genes from the PRL and GH/IGF-1 pathways. The associative analyses among SNP genotypes and fertility traits were performed using mixed-effect models. Allele substitution effects were calculated using a regression model that included the genotype term as covariate. Single-SNP association analyses indicated that eight SNP within the genes IGF-1, IGF-1R, IGFBP5, PAPPA1, PMCH, PRLR, SOCS5, and SSTR2 were associated with SPC (P < 0.05), whereas four SNP in the genes GHR, PAPPA2, PRLR, and SOCS4 were associated with DO (P < 0.05). In conclusion, SNP within genes of the PRL and GH/IGF-1 pathways resulted as predictors of reproductive phenotypes in heat-stressed Holstein cows, and these SNP are proposed as candidates for a marker-assisted selection program intended to improve fertility of dairy cattle raised in warm climates.


Assuntos
Bovinos/genética , Fertilidade/genética , Receptor IGF Tipo 1/genética , Receptores da Prolactina/genética , Receptores da Somatotropina/genética , Animais , Clima , Feminino , Genótipo , Hormônio do Crescimento , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Fator de Crescimento Insulin-Like I , Lactação , México , Fenótipo , Polimorfismo de Nucleotídeo Único , Prolactina , Reprodução , Clima Tropical
13.
PLoS One ; 10(2): e0118288, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25700273

RESUMO

Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10-20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas.


Assuntos
DNA/análise , Proteínas/genética , Análise de Sequência de DNA/métodos , Interface Usuário-Computador , Sequenciamento de Nucleotídeos em Larga Escala/normas , Internet , Mutagênese , Fenótipo , Proteínas/química , Proteínas/metabolismo , Controle de Qualidade , Análise de Sequência de DNA/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...